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ABSTRACT

We discuss electronic energy and charge tzransrer processes

at surfaces in terms of curve crossing models. We suggest tha-

at low kinetic energies the trajectory abrox:-atizn shcu oe

replaced by a mean trajectory approximation (MTA), in which th.e

nuclear motion gets feedback from and adjustt to the curve

crossing dynamics. We discuss two derivations of MTA by using an

eikonal approximation and a path integral method. The effects of

phonon or electron-hole pair excitations on the charge transfer

process are also incormorated.



I. Introduction

The dynamics of atomic and molecular processes at solid

surfaces is often dominated by non-adiabatic transitions between

quantum states of the atomic or-molecular system or between

states of the substrate. Frequently discussed examples are those

involving charge exchange between the external atom/molecule and

the surface. The simplest process of this kind is the

ionization/neutralization of an atom/ion incident on a metal

surface. 1-7 More complicated examples are charge transfer during
8 9-10

sputtering, chemiluminescence, electron or photon stimulated

desorption1 1 and energy transfer via an intermediate charge

transfer process. 1 2 Auger neutralization of an incident ion-
3

is a still more involved example. Other important orocesses that

may be described by curve crossing model are the surface induced

de-excitation of electronically or vibrationally excited molecule

and, in some cases, molecular dissociation during molecule-

surface collision.

The theoretical treatment of these processes usually

involves the classical trajectory approximation
3 68 3 C

(reviewed in Section Ii) which is valid only when the k:ne::c

energy of the incident atom or molecule is very large. For

incident energies of the order of the energy differences between

relevant quantum levels of the incident species or of the surface .'.
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this a;-proximation fails. While much ion scattering work is

carried out at high kinetic energy the low kinetic energy regime

is very important in electron stimulated desorption and in the

therma2 desorption and the sticking of alkali atoms. Since a

fully quantum mechanical treatment of these processes is

difficult (especially in three dimensions) and since one expects

that the motion of the incident atom is essentially classical and

quantum effects mostly control the transition between the

electronic states, one would like to seek an improved trajectory

approximation. While such a theory may yield a time dependent

Hamiltonian for the electronic problem (as does the trajectory

approximation), it should obtain the nuclear Trajectory by a

procedure that will recognize the continuous occurrence of the

electronic transition and use this information to guide the

evolution of the otherwise classical trajectory.

in this paper we examine the implications of the mean

:rajectory approximation for charge :ransfer processes at metal

surfaces. In this approximation the "classical" degrees of

freedom (denoted collectively by R) evolve under -ne potential
i, J

:-(R), where X, is the instantaneous amplitude of the

electronic state ! (characterizing the quantum degrees cf

!reedom) and H(R) is the matrix element of the Ham4-tonian f.r

the auantum system (which depend parametricalyv on R) between the

i and j quantum states.

.: ,. .- : :-. . : , : .. .:-. .-. :...-. ... . : - , . . . ..: , . .. - .. .. , ... .. .- .. ,.... ., ,. . .2
... .. ..'--" .. .... .. .. "' .. . '- ' ' k -:" ":" 'i 'i :" =" i " I " "' ' :- '" ' ." ." " ' . " , -- " : ". .. .
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This approximation has been applied by several workers in

15-21
the past to problems in molecular dynamics. Here we are

concerned with its justification from first principles as well as

with its extension to situations specific to surface science.

Thus we derive the approximation by two methods: the first is

based on the eikonal approximation while the second is obtained

by taking the extremum of the action functional in a path

integral expression for the quantum propagator. We then proceed

to apply this procedure to charge exchange processes at metal

surfaces, taking as a prototype the ionization-neutralization

processes involving an alkali atom colliding with a metal

surface. We derive the equations of motion which govern the

dynamics of the alkali atom motion towards and away from the

surface as well as the transition between the neutral and the

ionic state. These equations which describe the charge transfer

process within the mean potential approximation are then

supplemented by the interaction of the moving atom with phonons

and electron hole pair excitations in the solid. These

interactions give rise to friction on the atomic motion and at

finite temperatures, to a random force associated with the random

initial populations of phonon and electron hole pair states.

The mean potential approximation is superior to the

classical trajectory approximation in that it responds (in an

average way) to the quantum process. As a result the time
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evolution in the effective trajectory approximation conserves the

average energy, in contrast to classical trajectory approximation

which does not. At the same time the equations of motion in the

effective potential approximation are as easy to integrate as

those of the classical trajectory approximation. Numerical

results for alkali ionization and neutralization at metal surface

within the effective potential approximation will be presented in

22
a subsequent publication.

In contrast to most other treatments of charge exchange at

surfaces (e.g. refs. 3, 13) we do not use the one electron atomic

orbital picture but the overall energy eigenstates of the atom-

metal system. This enables us to describe this process within a

curve crossing model. Thus the initial state for a neutral atom

colliding with a metal surface at zero temperature consists of a

neutral and a metal both in their ground internal states. The

state of the system following electron transfer to the metal is a

neza! with one ex tra electron above - ermi -eve and a

oositive ion in its ground state. The energy difference between

two states is - -i where o is the metal work function, is :he

aZomic ionization potential and E is the fina: energy of the

:ransf - -e eIectron measured from the Fermi eve :..=s = -:

d4fference becomes smaller at shorter atom-surface distance

because I(R) decreases with R. in the single electron picture

this is expressed by the requirement that the energy of the

'ionizaticn level" rises as R decreases. While both pictures
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yield similar results if handled correctly, we feel that the use

of total energy levels is conceptually preferable to the one

electron picture and is more accurate..

The paper is organized as follows. In Section II we

describe the charge transfer process as a curve crossing. The

effective trajectory approximation is derived by using the

eikonal approximations (Section III) and by using a stationary

phase approximation in a path integral representaticn (Section

IV). The path integral method permits the incorporation of the

effects due to the kinetic energy operator which have not been

derived previously. In the Sections V and VI we show how to

implement the resulting equations of motion for a charge transfer

problem typical of surface science, which involves continuous

manifolds of crossing electronic states, and phonon or electron-

hole pair excitations.

Finally, in Section VII we summarize our results and

discuss the advantages and the shortcomings of the present

treatment.

idhidi +



i:.2 Alkali adsormtion as a Charge Transfer ?rocess.

We present here in detail the physical arguments used to

construct a curve crossing model for the alkali adsorption as a

charge transfer process described by the "chemical reaction"

Me(W0 ) + A(4j) - (Me-) ()i) + A (,0 ) (2.1)

Here, Me, A and A+ denote the ground state metal, the neutral

alkali atom and the alkali ion, respectively. (Me ) denotes the

metal surface with an extra electron; the star indicates that the

"negative ion" Me is excited (the transferred electron is placed

above the Fermi level). In the parentheses accompanving these

symbols we indicate the orbitals involved in the charge transfer

process. The superscripts specify the number of electrons

occupying each orbital. The electron to be transferred :s

.nitjally 'Located in the atomic orbital and ends un in the

empty metal orbital $;, whose orbital energy (with reszect to the

r le vel is e T. hr s an infinite number of fina states

(i.e. an infinite number of excited, negative ions (Me , one

for each w

To construct the energy curves correspncding o -he initia.

and final states specified by Equation (2.1) we use tr-.e

energy of :he surface as a conven-ent poin : of refeence. Si nce

in al the relevant excern m ents :he samole is grun.. .. - F__mi'

eve: 4s not chanced when he surface ga-ins an electrcn cr when

. . ..... ... s rf . .--
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it is disturbed by the approaching ion. The potential surfaces

discussed below correspond to electronic energy levels of the

combined metal-atom system and not to single electronic orbitals.

The energy difference AV (R) between the final and the initial

states specified by Equation (2.1), at a fixed atom-surface

distance R and for fixed e , is the energy I(R) required to

ionize the atom, minus the energy 0. - E recovered by placing

the electron in the orbital $ . The ionization potential I(R) is

given by Ic + VI(R) - Vn (R) where I. is the ionization potential

of the isolated atom and VI(R) and V n(R) are the ion-metal and

the atom-metal interaction energies, respectively. If the ion

binds more strongly to the surface than the neutral we have I(R)

< I . In what follows we assume this to be the case. Note that

the work fun-tion 0. appears, rather than a local work

23
function. This is because we define the ionization potential

I(R) as the work required to remove the electron to infinity;

therefore we need the work recovered by taking the electron from

infinity to e

The energy curves corresponding to the initial and the

final states of Equation (2.1) are shown in Figure 1. We have

assumed that the energy curve corresponding to the initial

(neutral) state has a small attractive well and a rapidly raising

repulsive part. The ionic curve can then be qualitatively drawn

by using the expression
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AV (R) I(R)-t +ea I +(V(R)-V (R))- +c (2.2)

which gives the energy difference between the ionic and the

neutral curve. At large particle-surface distances the

seoaration between these curves.is

AV a() = I - + E " (2.3)

in what follows we call AV ( ) the asymptotic mismatch of curve
a

a. Using this expression we can rewrite Equation (2.2) as

AV (R) = AV ( ) + (I(R)-I )) (2.4)

The energy difference AV (R). becomes zero at the distance

R given by

AV (R) 0 AV + I(R (2.5)

'f this ecuation has a solution the neutral and the ionic curves

cross (curve i, Figure 1) at R and, at that distance, the

initial and the final states of Eauation (2.1) are decenerate.

The charge transfer process resulting in the crea:Jon cf (Me

(D) is most likely to occur at Ra"

The crossing occurs only if the "image effects' 24 cntained

i e term i? )- are able to comzensate the asymtotic-

i.- _ .- ... ,.. ......- - .- .. .. . . .' • - .. . .. .." -. .. -- .---.. , ..
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s soluticn S (R,t), obtained after specifying classical initial
c

indJtions, is the classical Hamilton's principal function, or

le classical action.

To establish the meaning of the conditions (3.12) and

3.13) we take matrix elements with respect to the amplitude A tc

urn the operator equations into numerical ones. Since we expoect

to behave nearly classically we use for the wave function Eq.

3.10) a Gaussian form 31 defined by

2S (R,t) = -a t(R-Rt) + inC t  (3.15)

and

S(R,t) = (R-Rt) + (3.16)
t R-t t

where

1/4
Ct = (2a t/T) 1 1 4  (3.17

Here at, Pt, R and are real functions of time Lnd C_ istt t

the norma!,zation constant aoearing in Ea. (3.10), The meaning

of these functions can be understood by computing :he fol13wing

natrix elements:

] (R,t RJ)(R,td <R>=R, 3 1 )-

<F> = (3.19)

- -)2>
=  ,(3.20)

(3.21 '
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111.2 The use of the eikonal method for generating classical
trajectories in the one state problem.

We review here the manner in which the eikonal method

generates a classical trajectory in a simple one dimensional, one

electronic state problem. We use for the wavL function the form

, (R't)=Ct A(R,t) exp~iS(R,t)/?i}=e.%p{[So0(R,t)+i4S(R,t)3/1 )
(3.10)

where the amplitude A, the eikonal S, the normalization constant

C and the function S are real. We use the notation R when thet 0

position of the particle is a quantum variable, to distinguish it

from the classical trajectory R(t) . Inserting (R,t) in the time

dependent Schrodinger equation leads to

[i as0/3t + t]A H(R, P + - ) A (3.11)

where P is the momentum operator and aS/3R is an unknown ocerator

(which is diagonal in the coordinate representation).

if we assume that

(? + aS/;R) 2 (3S/aR) (3.12)

and

aS /;t << 3S/a: (3. 13)

the equation (11) reduces to Hiamilton-Jacobi Equation
3 0

3S,'a = H(R, 3S/;P) (3.14
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If the incident kinetic energy is small these two trajectories

are rather different. Equation (3.8) gives small changes in

velocity, while Equation (3.9) strongly accelerate* the particle

as it approaches the surface.

The fact that in most practical cases the amplitudes cl(t

and c2 (t) are both non-zero and the motion of the nucleus takes

place simultaneously on both surfaces gives rise to interesting

complications. A more realistic descriotion of the nuclear

motion requires the use of a new kind of force F(clc 2 ), which
2

depends on the amplitudes ci(t). A dependence cn Icif , i=!,2,

alone would be unsatisfactory since it eliminates quantum

interference effects. Neither Equation (3.8) not Equation (3.9),

nor any simple average of the two would be satisfactory.

This deficiency of the. trajectory approximation is not

confined to the charge transfer problem discussed here; it is a

general problem to be faced whenever a degree of freedom that we

wish to treat clas'sically is strongly coupled to a quantum degree

of freedom x. 2 9 A reasonable method of producina an imnroved

trajectory approximation is to take the classical limit in R

while treating x fully quantum mechanically. There are severai

ways of doing this and they can lead to differer.t "classical

mechanics" for the variable R. We present here a "mean

Zrajectory" approximation, obtained by using an eikona'

approximation (Section !1) and a path integral method (Section

V) . A more elaborate method using multiple Gaussian wave

packets wll be presented separately. 22
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*

H..(t) = Hij(R(t)) = JdxOi(x,R(t)) He(X,R(t))*.(xR(t))
(3.7)

H 1 and H22 are the ionic and the neutral energy curves,

respectively, and H12 is the coupling between them. The matrix

element H12 given by Equation (3.7) is non-zero because the

states 0., i=1,2 are diabatic. We have neglected here, as

27
customary when using diabatic states, terms containing the time

derivatives of the wave functions 0 i" We assume throughout this

paper that the dependence of Hij(R), i,j=l,2, on R is known.

in order to solve Equation (3.6) we must propose a method

for computing the dependence of R on t. If the incident kinetic

energy is much higher than the variation of Hii (R) with R and the

difference j2 - H11, we can use a straight line trajectory and a

hard wall reflection from the surface. At low kinetic energy,

such as that involved in the processes considered here, the

choice of trajectory is rather difficult. If the particle stays

neutral throughout the collision process then R(t) is given by

3H2 2 (R(t))
mR(t) = 3R(t) (3.8)

-f the particle is ionic throughout, then R(t) should be given by

aHli(R(t))
t)R(t (3.9.
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a classical field. In what follows we also use R to dencte the

nuclear position appearing as an argument in the wave function.

The state f(xR) associated with the Hamiltonian H(x,R)

depends on both x and R. If two electronic states ¢(x ,R) and

(b(X,R) (2 for the neutral and I for the ionic state) are

sufficient to describe the system then

(P(x,R) = Xi(R)41 (xR) + X2 (R)O 2 (x,R), (3.3)

where x1 (R) and x 2 (R) are nuclear wave functions. In the

trajectory approximation the total wave function is obtained by

replacing R in H (x,R) and t (x,R) with the trajectory R(t) and
e

the nuclear wave functions Xi(R) with the amplitudes c,(t):

(x,t) =  c (t) 1(x,R(t)) + c 2(t)(2('x,R(t)). (3.4)

Inserting Equation (3.4) in the time dependent Schrodinger

equation, and assuming, for simplicity, that

M, *

J*± (xR(t))%j(xR(t))dx = 6ij (3.5)

'eads to

ihci = u'i(R(t))" c (t )  + -:i (R(t)) c (t) j,i=l,2 (3.6) .

(iij

wz
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III THE MEAN TRAJECTORY APPROXIMATION DERIVED BY USING THE
EIKONAL APPROXIMATION.

III.1 Introduction

In order to specify in the simplest manner the reasons for

the present work we first consider a model in which only two

curves are important. The dynamics of such a system is

considerably simplified by making the so called trajectory

approximation,3,4,6,8,9-13,27 which is briefly described below.

Consider a system with two kinds of degrees of freedom denoted x

and R. In our case x denotes collectively the coordinates of all

the electrons and R is the surface-atom distance.

The full Hamiltonian for this system can be written as

2 2H(x,R) = (h /2m) V2  + H (x,R) (3.1)

This is the sum of the kinetic energy of the nuclei and the

electronic Hamiltonian H (xR) which contains the kinetic energy

of the electrons and the interaction energy between electrons and

nuclei. The trajectory approximation uses the Hamiltonian

H(x,R(t)) = H e(x,R(t)) (3.2)

where R(t) is the position of the atom, whose time dependence is

given by classical mechanics. Note that while R

appearing in Equation (3.1) is an operator, the quantity R(t) is

........................................... . . '



16

the absence of the approaching atom or ion. The local work

function ( CR) which is affected by the approaching species also 0

p~ays an important role, but only in the calculation of the

matrix elements which jnduce the electron t.-ansfer. In this

paper we assume that these matrix elements are known for all R.

S
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surface residence time can be included by allowing the ion to

recapture the lost electron on its outgoing trajectory. A finite

surface residence time can be simulated by adding a rate of

disappearance of the electron from the surface region.

We conclude this section with several remarks. First, even

though we have sometimes used a one electron language, the

present description is not a one electron model, and the states

used here are correlated electronic states of the metal-atom

system. Second, even though we use the terms ionic and neutral

throughout the paper, the model is not predicated on the

27assumption that the diabatic curves are purely ionic or neutral

at all atom surface distances. Preliminary calculations 28 using

the Generalized Valence Bond and the Hartree-Fock method for Na

adsorption on Ni clusters show that the "ionic" states are not

purely ionic. Nevertheless, the dynamic theory developed here

can be applied without modification to whatever states are

produced by quantum chemistry. The labels ionic and neutrals can

still be used for those curves which lead to alkali ions or

neutrals at large atom-surface distance. Third, we have used

throughout, for simplicity, a language valid for the one

dimensional case. However, all our remarks can be extended to

three dimensions without difficulties. Finally note that the

potential surfaces for the motion of the neutral atom and of the

ion are characterized by the local ionization potential I(R) and

the work function . The latter corresponds to the surface in

. . . . . . . . . .. . . . . . . . .- ..
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(i.e. large e , large asymptotic mismatch AV()) end up deeper

into the ionic well than those occurring at large R., and

have a smaller chance of neutralization, therefore they have a

larger trapping probability. Furthermore, the probability of

trapping goes up with € -I since this forces the ionization to S

occur at smaller values of R

This qualitative picture can also be used to understand 0

coverage effects. As alkali atoms coverage is increased b is
250

lowered dramatically 25 and @ -I becomes negative. The alkali

atom cannot be fully ionized and adsorption must occur by usual S

chemisorption. The desorption process must occur exclusively

through neutral desorption until the coverage is lowered so much

(by desorption) that .4 -I becomes positive and both ion and

neutral desorption become possible. Such behavior is observed,

for example for K desorption from Ni(111)'2 6

Interesting situations appear when the surface reridence

time of the transferred electron is comparable to or larger than

the collision time. This might happen either when the electron

is transferred into an empty surface state with a lifetime T

when the kinetic energy of the incident particle is very high, or

when the conductivity of the material is low. The surface'state

can be included in the model presented here as a discrete state

with a finite width r (r is the lifetime of the electron in the . '

state). The presence of an electron with an infinitely long

• " ::.:..-.: :.. -' .?:: . .... ....... ...-........... . .. - ., . - - . . . -. . . . .. . .
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all smaller than m given by - -I,=min &(R).

A newly formed ion starts interacting with the thermally

excited electrons as soon as it is produced. The rate of

neutralization is the quantum mechanical transition rate to the

neutral curve labelled by n, multiplied by the probability that

is thermally occupied.

We can now summarize the overall dynamic picture for the

case r < <T c and 0 -10>0. There is a finite probability that the

incident neutral is not ionized, in which case it will scatter

back into the vacuum. The ionization brings about some

complexity. If it takes place by a transition to the ionic curve

labelled by a, the electron is placed in the empty metal orbital

E from where it promptly moves into the bulk and disappears. If

the ionizing transition occurs to a curve a'for which A =K-AV <0a a
(i.e. the kinetic energy of the neutral is below the ionic curve

a) the ion can escape from the surface only by subsequent

neutralization, caused by tunneling of thermally excited

electrons (since the ion crosses the neutral curves shown in

Figure 2). The chance of neutralization depends on the kinetic

energy of the ion. A low kinetic energy ion is deep in the ionic

well and can only undergo transitions on the neutral curves

located below it, which correspond to larger values of ' "

therefore to smaller probabilities that n is thermally occupied

by an electron. Ionizing transitions that take place at small R

. .!



MeH') + A ('0 ) * Me+(J) + . (2.6)

Here Me(I) represents the metal having a thermally excited

electron in the orbital 4 whose energy nI is above the Fermi

level (Ti is the energy of the transition from the Fermi level to

). Me ( ) is the metal after electron removal from w

The energy required for the process described by Equation

(2.6) is

0i

&5 (R) = ( - -ICR) (2.7)

In Figure 2 we plot the ionic curve ?i(R) and the set of

neutral curves given by

dn, (R) &i(R) + € - 1(R) .

;We assume, for s.4mlicitv that the neutral curve is independent

of R)

=0 (i.e. we consider an electron at the Fermi evel)

--- n (- (m)-I- and the neutral curve is above the ionic

ne (we consider ecase d >1 ). The neutral curve 3 and the

icnc curve . do not cross. :f t - t = the two curves coincide

or R-.. I ->o -V the neutral curve crosses the ronic one for

0I

. . . . . . . . . . . , . . . . . . . . .. . . . • . . . . . . -, - - . . . . . -<. , . , . < . . ,- , . , . , . < , [ -[ , , , , .
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2(21r/i)H 12 (R)j p(E ) where H 12(R a ) is the coupling between the

ionic and the neutral states at their crossing distance R and

p(e ) is the density of the ionic states. The condition Tr  c

precludes the neutralization of the ion by a recrossing of the

incident neutral curve on the outgoing trajectory. The dynamics

occurs as it the incident neutral curve disappears as soon as a

transition to an ionic curve is completed.

While the ion cannot be reneutralized by the electron which

was previously transferred to the surface, neutralization can

occur by tunneling of thermally excited electrons. The condition

S-I W 0> 0 precludes the electrons at or below the Fermi level

from participating in the neutralization of the ion; furthermore

if ow-I >>kT only very few thermal electrons have enough energy

to neutralize the ion resonantly and the neutralization rate is

extremely small. The behavior of the ion in the extreme case in

which Tr < <T c and 00-10>>kT, depends on the value of A a K -

AV (-), where K is the kinetic energy of the incident atom. If
a

the ionization occured by a transition for which A < 0 the ion

is trapped; if A > 0 trapping occurs only if the ion loses (to

phonons or electron-hole pairs) an amount of energy larger than

A . Otherwise the ion escapes into the vacuum.

If 1 - > 0 but is not much larger than kT the ion can

be neutralized by tunneling of thermally excited electrons. This

process can be described by the "chemical reaction"

.................................................................. °"- "- "" . .... l



i0

{x), hence the ionic curves, constitute a continuous manifold, so

that as the neutral approaches the surface the neutral state

*- crosses ionic curves over a large distance range.

Let us assume that a transition to the ionic state a has

occured at R , while the neutral was on its incoming trajectory.

]b This places the transferred electron in the empty surface orbital

e. The subsequent dynamics depends on whether the ion is

neutralized on the remainder of the trajectory. Since we treat

*, the transition to the ionic state a by full quantum mechanics,

rather than a one-crossing model, or perturbation theory, the

transition amplitude contains the effect of all the crossings

back and forth between the two states, taking place while R is

close to R . The ion hits the wall, turns around, and approaches

again the point R where is could be neutraliztd by the electron

initially placed in e , if that electron has not already moved

into the bulk. In what follows we assume that surface residence

time -r of the transferred electron is much smaller than ther

collision time T . Since, strictly speaking, the electron is not

transferred into a one electron state W but in a localized wave

packet centered around e , the electron moves towards the bulk

with the group velocity of the packet. The surface residence

time of interest here can be defined by Tr =L/v where L is ther

displacement required tc cancel the overlap between the wave

packet and the hole state in the atom and v is the group

velocity. An equivalent statement is that r ,is roughly given by

......i-:.:.. -....:..:. ..?..-.............. ................. ........ ............. *.
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mismatch AV (w). If the asymptotic mismatch Js zero than

Equation (2.4) gives I(R )=I and the crossing occurs at very

large values of R . As the mismatch is increased, the crossing

point moves to smaller values of R , provided that AV (w)>O.

Obviously if AV (w)<O the curves cannot cross at any distance.

Also if 6V (w) becomes too large the image field cannot

compensate for it and the curves do not cross. We denote by

AVm() the maximum value of AV (-) that can be compensat-d.

0O The ionic curves can thus be characterized by arLy of the

following parameters: the asymptotic mismatch AV (-), the

crossing distance R , the orbital energy e , or the index a.

When AV (c) goes up, R gets smaller and e increases.

In discussing the dynamic processes possible in this system

of curves we assume that we have a procedure for generating a

classical trajectory R(t) describing the motion of the incident

neutral. This incident particle can undergo transitions to any

0
of the ionic curves as long as they cross the neutral one. A

transition to an ionic state AV (t) tends to take place near the

crossing point R . At any other point R there is an energy

mismatch AV (R), which means that after the transition to the

curve a the nucleus must change suddenly its velocity. Since the

electron transfer cannot provide a large momentum transfer such

an event is unlikely unless AV (R) is very small, that is, unless

R is very close to R. It should be kept in mind that the states

~~~~~~. . ... -"• ,-. . ... . . ,.. . .. . ...
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We see that Rt and Pt are the expectation values of the position

and momentum, yt is a phase, and at is proportional to the

quantum fluctuation of the momentum around its expectation values

and inversely proportional to the fluctuations in the position.

Taking the matrix element of the condition (12) with

respect to A leads to

2 as2

4A(R,t) [P + aS/aR] 2 A(R,t) dR = :AU 4 - AdR (3.22)

If we use, as an approximation to S the classical action Sc , and

the classical equation P(t) = 3S /aR(t) , we can easily perform
c

the integrals in Equation (22), to obtain

ha < < P2  (3.23)
t t

We have identified P(t) = as /SR(t) with the expectation value of

c

the momentum Pt, and this will be justified later. The condition

(3.12) is thus equivalent to the requirement of Eq. (3.23) that

0 the quantum fluctuations of the momentum are much smaller than

its expectation value.

Treating the condition (3.13) in a similar manner requires

the evaluation of

:A(as /t)AdR << :A(8S/3t)AdR (3.24)
0
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Performing the integrals leads to

-= LA(S!t)Ad.0 (3.25a)

and

A ACR H (R(t), P(t)) (3. 25b)

30We have replaced aS/at with aSc /t which in turn is equal to

the classical Hamiltonian H c . urthermore, we used

(3.10) for S Clearly condition (3.24) is alwyas satisfied

since the classical Hamiltonian is positive.

The condition discussed above establish under what

circumstances we can replace the eikonal S(R,t) with the

classical action S (R(t), P(t)). So far the classical mechanicsc

appears as a device to compute the eikonal: the.e is no

guarantee that the classical trajectory has any relationship with

the motion of the particle as given by the time dependent

Schrodinger equation. For example, if at=O the Gaussian wave

packet becomes a planar wave, and the condition (3.23) is

fulfilled. However, it is impossible to describe the behav4cr of

a particle in a planar wave state by any kind of classical

trajectory.

The condition under which the 'trajectory generated by the

Hamit!on-Jacobi equation approximates the behavior of the quantum

system can be obtained by using the wave packet defined by

. ........ . . . . . . ...'i ~ i 1 
-
.. . . " ' '' " .' " " " '" "- ""
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Equations (3.15), (3.16) and (3.10), and the Ehrenfest theoremn3 2

d - "
d--q (R,t) Rq(R,t) dR = -fW (R,t) -: t) ) dR (3.26)

aR

According the Equation (3.18) the left hand side of the above

eauation is dRt/dt. Since the wave function appearing in the

right hand side is localized over a spatial range given by

(21 /at) 1 2 we can expand V(R) in Equation (3.26) in powers of R-

R , and this leads to

6%

dt aV(Rt) 1 0 3V(Rt) 2 (< (R-?.,) > ;(3.27)
dt 3R 2 i3

tt

the expectation value Rt of R satisfies the classical ecuation of

motion if the secon, term in Equation (3.27) is much smaller than

the first. Using Equation (3.20) we can write this ccndiftion as

: ,'Sat )  << 3 2

:f conditions (3.23), and (3.28) are satisfied, the eikona"

:s -ven by the classical action, and the ra=ectories generated

by class':a' mechanics are a reasonabl'e description of -he mean

qua.nturn motion of the system.

-' -: - -" = ' -" "'" " " ::- -" .-. . ..".".". . . . . . . . ..". . ..- " " " "" " 
"

." - -.- " "
-' "

.'
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In what follows we postulate that the above vroceaure can

be used to generate a "classical mechanics" for cases in which

the variable R to be treated classically is strongly coupled to a

cuantum companion x, and we apply this idea to the case of a two

state system.

111.3 The application of the eikonal method to the two
state problem.

To apply the method outlined at 111.2 we assume a wave

function of the form

W(x,R;t) = A(x,R;t) exp(iS(R,t)/h)
= -(3.29)

{x (R;t) I(x,R) + x2 (R;t)D2 (x,R)) exp(iS/(}.

Here S(R,t) is an unknown real function (the eikonal) of the

nuclear coordinate R and the time t, and xi(R,t) i=l,2 are the

nuclear wave functions when the system is in the electronic state

.(x,R;t), i=1,2. To derive the approrpriate classical limi: for

the nuclear motion we eliminate first the electronic decrees of

freedom from the problem by introducing the wave func.icn

1)(x,R;t) given by Equation (3.29) in the time dependent

Schrodinger equation, and by operating on the resulting equa "ti. zn, 6

from the left, with Jdx P(x,R), i=l,2. We obtain

3S + Yh + L =!/ .
+l.t) = (1 /2m){[P + ] - (R)lx

at at " I B

(3.30a)
H, H (R) 2"'

and

i . . ..
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2

[-3S/3t+i /3t]x 21R;t) = ((l/2m)[P+3S/aR] +H22(R))% 2

(3.30b)
+ H21(R)XI

We have neglected the matrix elements containing a¢i /a or

82 i/ar2 since we work with a diabatic representation and Assume

that thq term H12 is the largest coupling between the electronic

states. The matrix elements H ij(R) are defined by Equation (3.7)

and the orthonormality condition (3.5) has been assumed.

The classical limit is taken by assuming that ih Bxi/3t +

(3S/at)x. 2 (ZS/3t) X, and (P+3S/3R) 2 (aS/8R) , and the

equations (3.30a,b) become

- 2
-({S/3t)X I = ((1/2m)(aS/3R) + HII}% l1+ H1 2X2  (3.31a)

and
2

-(aS/at)% 2 = ((1/2m)(3S/SR) + H 2 2 }x 2 +H 2 1 X1  (3.31b)

Multiplying Equation (3.31a) with X and (3.31b) with X2 and

adding the results leads to

2
-ZS/3t = (1/2m)(BS/aR) + V(R;t) (3.32)

with

2 2 2 -

V(R;t,) xi Xji(R × (3.33)

"i=! j=l =1

Equation (3.32) is a Hamilton-Jacobi equation with an "effective

potential" V(R;t) which depends on the potential energies H; (R)

of the two states, on the coupling Hiz(R) between them, on the

probability xi( x') that the particle is in the state i,

.
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*

(i=1,2) and on the "coherent term" x i xj which introduces the

effect of quantum interference between the two nuclear states.

As in Section 111.2 classical mechanics appears only as a device

to compute the eikonal.

Using Equation (3.32) we can rewrite the Equations (3.30)

as

2, aS 2 S
i x1 /t=(i/2m)(P 2 P + 2 V(2 )-X,

(3.34a)
H(R)+H (R)x2×IR)I+22 2

and

X2 (-2 2S 2 R " !
.n-- (/2m){ F+2 L +at i 2 2

+ H 2 2 (R)x 2 +A 2 1 (R) % (3.34b)

-f the wave function is such that the mcmentum fluctuations are

small compared to the classical momentum aiven by Ecuation

'3.32), and the functions of coordinate S(R,t), 14. (R) and V(R,t)

vary smocthyv with R over the spatial scale set by the quantum

fluctuations in coordinate, we can replace P and R in Equations

(3.34) with their classical values P(t) and R(t) . Furthermore,

the diagonal matrix element common to both equations can be

e:m inated by int-ducing in the wave function tW(x ,;t) defined

by Er. (3.29) the appropriate =hase factzr. Wi,.h these chances

'ne (3.33) become
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ih ~ ~ H = i (R(t))xi(t)+Hij(R(t))% (t) 4,-*=1,2 (i-j)(3.25)

and the effective potential is

2 2 *
V(R(t);t) = x (t,)x (t)H ij (R(t))/Z %i(t %i(t) • (3.36)

1=1 j=1 1 J i.

S Here the nuclear wave function depends on time or..v.

We can now summarize the result obtained by using the

eikonal method for the two state problem. The quantum amplitudes

xi(t) are given by the same equations as those of the customary

trajectory method (Section III1.). The "classica." equation of

motion is however deeply modified since the ootential energy

given by Equation (3.36) is neither H nor H2  nor a simole

classical average Z x x~%(R).
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IV PATH I1TEGRAL FORMULATION

As we have already mentioned our strategy in generating

improved trajectory zpproximations is to formulate the problem 0

quantum mechanically and then to take the classical limit in the

degrees of freedom whose motion is to be described by a

trajectoiy, while maintaining a quantum theory for the otrher 0

variables. The classical limit can be taken by a variety of

methods. When applied to all the degrees of freedom of a one

state problem, all these methods lead to Newton's equation. 0

However, the same methods applied to a many state problem in

which some degrees of freedom are treated quantum mechanically,

lead to different trajectory equations. The acceptance of such

anproximations and the choice of the best among them is based on

our prior intuitive expectations of what such a mechanics should

be, on their agreement with the experiments (where reliable

comparisons can be made) and on their computational advantages.

Given this situation it seems to us worthwhile to exolore under

what circumstances various methods of taking the classical limit

lead to the same results. Here we show that within a path

integral formulation the theory derived in Section III is

recovered if we use a coherent state representation to descr:ibe

the electrcnic states and then treat all degrees of freedom

classically (by taking the stationary phase approximaticn)

W
We consider the Hamilonian -"

"S
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N N N

H = H (R ) n><n l + H (R)In><ml + I n><nI
jnn nm 2M

n=1 n,m=1 n=1
(4.1)

where In> are the electronic states, and R, P and M denote

nuclear position momentum and mass, respectively. This

Hamiltonian correspondn to a diabatic representation in which the

different electronic states are coupled by H and the couplingnm

due to the nuclear kinetic energy operator is disregarded. We

wish to derive a nath integral representation for the propagator

-(i/h)Ht
K(R,,R oo It) = <Rpje IR 0o >  (4.2)

where JR4i> denotes a state of the system in which the electronic

state is 4=Z xn n> and the nuclear state is given by the

eigenfunction IR> of the nuclear position operator. To this end

we use the resolutions of the identity operator in nuclear space

SdRIR><Ri = 1 (4.3)

and in the electronic space

Sd4jj(i>< j = 1 (4.4)

Here

Sd*j (N+ 1! (4 5 )wh nd o (r ex u d er t e "

where the prime denotes integration under the reszrrizion

1.1

• .". -; .- -i - " - . . .. . , . .. i ..i , " " " " "-
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The identIty (".4)-(4.5) may be easily p -ver, by showmnqic

that <"fd~k t><Im> =(N+I)! f'(dx Idy./Tr)x n-iY n)(x Mi 7) nS

The path integral cani be constrv.zted in the usual way

L i F61

K(Rj,R 0 i t) =<R LIL ITe jR 0 1 0
j=1 C

(4.6)

where At=t'L, j. = ~.), tj= t +jAt and where R and W stand for

R and f. at ti4me t. Focussing now on the matrix element

<. 4 4le.-Lt,' IR. . > we evalual.e i ts elIect-,roni4c par t first,

keeping R and F in the Hamiltcnian (4.1) as paramezers. For

ccrp eteness we coutline the -procedure, in Acoendix A. The resu.ii:

e e

2I

V (R)

e- L_. . < h 2M >
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Here P and R are operators in the space spanned by the nuclear

wave functions, and .> is given in terms of the coefficients

X by

< l > < <(Z n(t ) n>)f (' n n(t )n) >
n dt n

, (4.8)
= Z n (t.)X (t.)

nn jnn

V_(R) is
J

2nn *
V.(R) =ZIx (tjH H (R)+Z Z x (t)x (t )H (R) (4.9)

jn j nn n jm nrn

The nuclear matrix element in (4.7) is now seen to take a

form which is normally obtained for a quantum particle moving

under the influence of a potential V(R). Evaluating the R matrix

element in the standard way and inserting it into (4.6), then

taking the L - limit, yields

K(Ri,Ro4o t) =S D DReiS(RIR o It) (4.10)
0 0 00

With

t
S(R ORo0oIt )  =( L R t , (t ) X t ,~ ' , ' 4.11)

t
0

and the "Lagrangian" L given by
. I *2 2

n- Z( xnr'CR)
n n

(4.12
. Z Xn Xm nm (R))
nm

the symbols D. and DR are

.. .. .......... A.
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N d(Rex 1 (tj))d(Imx,(tj)
DO) lim Ii ((T+1) fT4.13

La '=1 r=. 1

and

DR 11m ( 7 dR(t})) (4.14) 0
j=1

Equation (4.10) is an exact representation of the propagator in

terms of a path integral over all the paths which lead from the

state R O ,  o = Ixn t ))n> at time t to the final state R and =.

ZXn (t) n>, at time t. Having found this form it is of interest 0

to look for the optimal path, the analog of the classical limit,

as an approximation to the path integral. For this purpose

define X n = Rexn Yn Imxn and replace in Equation (4.12) xn = 

Xn + iYn and Xn = X - iYn everywhere. To satisfy the

2 ~22
restriction ZIX nI=I we may add to L a term XZ(X2n+Yn) where ). is

a lagrange multiplier, but it turns out that this does not change

the result. The optimal path is the solution of the Euler-

Lagrange equations of motion generated by minimizing the action

given by Eqs. (4.11-4.12):

-L d aL
R dt BR

=d L 0  3L d 3L 0 (all n) (4.15)
TT t ax a"Y dt aY

n nn

These yie2d the fzllowing Equaticns of motion

V(4 .(x .

S(4.1) M @R
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x 7( (R)x + Z H (R)xk](~ N) 7:i [Hn( n kHnk k..
k

with the effective potential

V(R, )x ) = Z H (R)x 1 2 + Z Z H (R)xx (4.18)
n nn n n (nm4.13

To obtain Equation (4.17) we have recombined the equations

obtained for X and Y . Eauations (4.16)-(4.18) are identical to
n n

the equations of motion derived in Section III.

The following comments should be made with respect to this

derivation: (a) The same results are obtained if instead of

replacing x by X +iY we regard xn and xn as independent
n n nn n

variables and use the Euler-Lagrange equations in the form aL/a- n

nn-d/'dt('Li"xn )=O.

(b) In the absence of coupling the nuclear motion (i.e. if

we were evaluating the time evolution of an N-level system) the

resulting EO: (4.17) is just the Schrodinger equation for this

system. Obviously the coptimal path is over determined by the

reauirements that 0(to)=: ° and W(t)=% are given, and generailv we

will not find a path that will satisfy both these reouirements

and Eq (4.17) . The result may be still interpreted in the

fo.owing way. The prcbability amplitude to be in a final state

starting from an ini4tia state i may be written in the form

"J <w g>K(',voit). The cotimization procedure reoDaces this

0'q
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integral by the maximum value of the integrand wh. ich is otai:net

i ,: (n> is the solution of Eq.(4. .7).

The procedure described above may be used to obtain

equations of motion for more general situations involving coupled

cuantum-classical systems. For exar-ple, the Hamiltonian (4.1)

can be supplemented with coupling terms arising from the effect

of the nuclear kinetic energy operator on the electronic states,

leading to

N

- = I() n><m +

nm=1 n,m=l 4. 1

+ z jn>(n!2 2n

h

(?) -in(~R) Cnm)(rR)- r) r 2R):)

and

" ( R ) =t - -,( r , R ) 4 2 1

*!ere < (r,R) In> is used to denote the expcli ce ..enence of

the electronic wave function on the electronic (r) and nuclear

R) coordinates. The procedure described above 'a be used to

ob-tain the zromagatcr in the form

t) ="l-m d..dF.i~ r L- iSD~

. . . . . . . "1 1,
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;econd mechanism consists in direct energy transfer from the

noving ion to the electrons in the metal, and it is discussed i

lere in detail. This also has two distinct aspects. One

corresponds to electron-hole pair excitations caused by the

sudden creation of the ion through electron transfer and it was

discussed previously in a different physical context by GadzuK
and Metiu 4 3 and Schonhammer and Gunnarson. 46The other

corresponds to electron-hole pair excitations by the ionic motion

37,34
and was considered, for example, by Suhl etl al. and

Korzeniewski et.al.
4

In the present section we consider the effect of the energy

transfer, to excite electron-hole pairs, on the motion of the

ion. In the spirit of the Langevin approach to many body

dynamics we would like to produce an equation which does not make

explicit reference to the detailed electron-hole pair dynamics.
i

Since the motion of the ion drives the excitation of the

electrons, it must provide the excitation energy: therefore, the

desired equation must contain a friction term. Furthermore, the

interaction of the ion with the polarization fields caused by the

thermal fluctuations of the electron in the metal must be taken

into account through the presence of a random force in the

equation of motion of the ion. Since the metal screens the ion

field we can assume that the screened interaction causes a small

perturbation in the motion of the electrons in the metal

-herefore we expeci t'e random force and the friction kernel.

L . _ ; . , - " - . . . ,. -. - - . . ., .. • ... : , .
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The coupling to the lattice affects not only the nuclear

motion but also the transition amplitudes c.(t) since H..(R,Y,X
1~ 0

are now function of the stochastic variable Y. Both the crossing

point and the coupling strength are random variables. The

observable quantities of the theory must be computed by running

many stochastic trajectories and averaging the quantity of

interest over them.

VI.2. Energy Loss Due to Electron-Hole Pair Excitations.

Recently there has been a lively interest in the manner in

which the excitation of electron-hole pairs in the surface

influences the dynamics of adsorbates. 3 '4 '9 '10 1 2 .2 1 3 5 - 5 5  Two

types of mechanisms are possible in the problem of interest here.

In the first, the electron jumping from the atom into the metal

interacts with the electrons already there and it is

ine!astically scattered. If the interaction partner is below the

Fermi level the interaction can excite an electron-hole pair.

This is similar to a shake-up process and it could be represented

by giving each ionic state a width which corresponds to the rate

of energy loss from the transferred electron to the electrons

below the Fermi level. The transferred electron can also

interact with the electrons thermally excited above the Fermi

level and this leads to either energy loss or gain. This can

also be represented by giving the ionic state a width. The

. L 
°

" 
°

" " 
°

° " ° " " " ° " ' -
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M 2 2 --Md~Yidt = -×I : 1IIRY'Xo)/3Y
11 0

- 2Re xIx 2  H 12(R Y.X 0)/BY (6.3)

N
X XX

Here K is the force constant coupling X to Y. The equation of

motion for the secondary atoms is that of the harmonic lattice in

the absence of the ion. X represents the coordinates of the0

secondary atoms in their equilbrium postions.

Following the Adelman-Doll procedure we can eliminate the

secondary lattice atoms to obtain a Langevin equation for the

primary atom:

2 22 S 
Md Y~dt = - (3H I'iY)-2Re X1 x 2 (;H B2Y)

I11 12
(6.4))

t
I y(t-t')Y(tl)dt' - F(t)

The friction kernel is proportional to the linear response

function of the lattice in the absence of the primary atom. The

random force F(t) is Gaussian and its correlation function is the

Green's function of the secondary lattice in the absence of the

primary atom. The Green's function and the linear response

function are related by the fluctuation-dissipation theorem. The

Langevin equation can be solved efficiently by modeling the

fr ic-on and generatzng F t) on the computer as shown by Shugord

34
e t . a I

.1

• " ""'' ,, h ~ d ilm |- .. ... . .. .... " . . . .
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under the influence of the effective potential

2 2 *
V(RX-.t) = Z Z Hit j t Hij (R,X) .1"

i=1 j= ,

We assume here that the neutral curve, which we denote H 22 is

independent of X. In other words, the energy lost by the neutral

to phonons is disregarded since in this context it does not have

marked effects on sticking. It can however be easily included,

if necessary.

In order to derive a Langevin equation for the present

situation we follow Adelman and Doll and divide the lattice

atoms into a primary zone which suffers the brunt of the

collision with ion, and a secondary zone which interacts with the

primary atoms only. For simplicity we take only one primary atom

and denote its coordinate by Y(t); the other lattice atom form

the secondary zone and their coordinates are denoted either by

. u=l.....Nwhen we need to specify all of them, or by X, when

they are denoted collectively. The equation of motion for the

ion is

2 2
md-R/dt = - x i  X. 3H. .(R(t), Y(t),X )/aR, (6.2)

i,j=l o i f o

The equation of motion for the primary zone atom is )
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VI THE INCLUSION OF PHONON AND ELECTRON-HOLE
EXCITATION AS ENERGY LOSS CHANNELS.

As we have discussed in Section II if the kinetic energy K

of the incident neutral is higher than the asymptotic energy

mismatch A V(-) (i.e. A =K-AV (-)>O) the ion formed by charge

transfer sticks to the surface ohly if it loses (to phonons or

electron hole pairs) an amount of energy larger than A In what

follows we outline a curve crossing theory which include such

energy loss processes. Both consist of deriving Langevin

equations in which the action of phonons or electron-hole pairs

generates friction and random forces in the mean trajectory

equation.

VI.1 The Inclusion of Phonons.

We consider here the two state problem discussed in Section

.11.3 and include in both the wave function and the electronic

Hamiltonian the coordinates of all the lattice atoms. For

simplicity we denote all these coordinates by X. and consider the

one dimensional case only. The extension to three dimensions and

more than two electronic states is straightforward.

By repeating the derivations presented in Section 1I .3 we

obtain equations identical to (3.35) and (3.36) in which the .

latrix elements H.. depend on R(t) and X(t). We must now specify
; 

S
a procedure that gives the equation of motion for R(t) and X(t)

• . . .. . . . . . . • .. .. " - - - . .
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and where the prime(') denotes derivative with respect to R. In

f k1 this derivative is obtained by replacing HkE(R)HElI(R) by its

R derivative with HII(R) kept fixed). The set of equations

(5.22)-(5.23) may be now integrated numerically if a model for

the coupling matrix elements is constructed.

Mani
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t

= H21 2 (R) 1 2 R)e c 2  1 1 (R)c I

(5. 22a)

t
I- d- d E 12 (r

![H 2 1 (R)-Z 2 1 (R) ] e  , + r (R )c

2 h 1 2 1h2

(5. 22b)

and

MR -{(H I (R)-H'oo(R))Ic 1 I2 + (H2 (R)-H 'oo(R)) Ic 2  2

H' (R) + 2RefZ(R) I c 2  (5.23)

t

* -~ -~ dt 2 1Lt

-(H12(R)-Z'2 (R)-Z (R))e c c2 D

where

=H - H 5.24£21 22 !. ".

z = Dkl - (k,l 1,2) 5.25

D( R) = ?PldEo(E) H (R) HEI(R) (5.26)
ki00 )E1 1(R)

!(R) = -Td-p(E)kE R H (R (R) 5.27)

kE E I

p
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to those described above where we now have two discrete states 1

(neutral) and 2 (surface state) coupled to the continuum of ionic

states. Tha neutral state coupling to the surface state leads to

the ionization of the neutral. The electron transferred into the

surface state can be recaptured by the ion (the coupling is H2 )

leading to neutralization. The mean potential for this case is

2 2 * 2 *

V(R(t)) = Z Z H ij(R(t))i2 +  Z SdEp(E)[Hj (R(t))xi×x
i=l j=1 j=1

(5.19)

+ Hej(R(t))%xj]+Sdep(e)H (R(t))Ix 2E

The classical equation for R(t) is, as before,

MR = -3V(R)/BR (5.20)

while the equations for the amplitudes x are

*i

x - (H (R(t)) I+H 2(R(t))x2 + S d o ( e  (R(t))-x

% - (H 2 2 (R(t))x 2 +H 2 1(R(t))X.+SdEo(E)H 2 (R(t))X)

*i
(11= - (H R(t))x +H (R(t))x +H (R(t))x 2 )

(5.21)

?roceedings along lines similar to those described below Eq.

5.4) leads to the set of equations

S',
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The above calculations allow us to write the effective

potential as

VRt;t Ct)2 2

V(R(t) ;t) = I ( )12(H 1 1 (R(t))-2M(t)) + H (R(t)(2-Ic (t) 2

with (5.15)

t t
C (t) = C exp-(i/) 1 (T)dT) exp{- r(T)d-) (5.16)

0 0

The results (5.11) and (5.12) may bQ improved by

recognizing from the beginning that c (t) has an (yet unknown)

phase -1/7 I A(T)dT and by determining this phase self-

consistently. The result is

+- dE p(E)IH F 2
A~)= PP ! (5.17)E+H (t)- (t)-A(t)

00
and

r( t) T r dE p(E) IH IEI 2 (E+HI oo(t)-tHI!(t)-AM )- (5.18)

Since A and r are the real and imaginary parts of the self-energy

of the state 1, these equations are reminescent of RPA results.

This is not surprising since the corrections in Eqs. (5.17) and

(5.18) are of the type appearing in time dependent Hartree

aporoximation.

Before concluding this section we briefly discuss the case

where a local surface state with a long lifetime exists above the

?ermi level. It is easy to treat this case along line-s similar
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+0 dE p(E) HIE 2
~() - E+H (t)-H 1  (511

-0 00 11
and

2F(t) = dE p(E)IH 1 EI 8(E+H (t)- 512

if the continuum states form a narrow band (which means that O(E)

is zero outside a narrow energy range) these equations will be

modified by "edge effects'. A very narrow ionic band influerces

the neutral state just like a single ionic state.

The -. culations carried out above permit us to rewrite the

2,
effective potential given by Eq. (5.4) in terms of 'c.(t)! 2 (t)

and 7(t) alone. The last term In Eq. (5.4) can be written as

2 2" = _) 1') C7 ' f t = t'- c (1, 1 .. 5.--3)
c0

We ota-n this by observing that E = (t))-E and that we
-- 00

-d zn': the gradient cf '- (to comoute the force) so we can

aK e ',: . so we use the normalization condition

, ct' 2

The middle two terms in Eq. (5.4) can be rewritten by

expressing x in terms of x. and using the approximations

=resented under the eauation (5.7,; zhe result is that the two

terms are equal to -2(t) C.

.4

..... ... . . . . . .- . . . . . .. . . . , . •.
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is a time independent energy giving the difference between the S

parallel curves HEE and H If we assume that the "amnlitude"
EE 00

.H (t')c (t') varies with t' on ; time scale much slower that -he-
1E 1

phase g(t)-P(t') + E(t-t'), than we can replace HiE(t)c (t')

with HiE(t)cI(t) and remove it from the integral over t. After

that we can perform the Titegrl- over t' by inserting a factor

exn(+lt) r>0, to insure that the integral ccnverges. We get

t ti

I d-' T [ f(T) - +iIdT)

(5.8)

t
(h/i) (f(t)-e+i)- exp{-(i/i) I [ f(T)- -E+iTI]d-}c

in deriving this we assume that f(T) (which in our case is S

(c)-Hoo0 (T)+E) can be replaced by f(t) and be treated as a

nearly cozstant quantity. After performing these calculations we

obtain:

ihc1 (t) = [ (t)-if(t)]c1 (t) (5.9)

with

Rlim dEp(E)I H 5:+(t)t)-HI(t)+I!

t)J = 0 Im "- J
(5.10)

:f the integration interval is practicaily infinite the last

equaticn leads to

" " -.
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disregarded. The effective classical interaction is given by

2
V(R(t)) = H1 1 (R(t))x 1 (t)! + IdE p(E)(H 1 (R(t))x* )(t)xeCt)

* 2
+ H 1 (R(t))x (t)x (t)] + Ide p(E)He (R(t))Ix (t)IE (5.4)

The "classical" trajectory can be computed by using Hamilton

eauations with the Hamiltonian P(t) 2/2m+V(R(t)).

We can simplify these equations by following a standard

procedure used in situations when a discrete state interacts with

a continuum. W-a start by integrating exactly Eq. (5.3) to

express X as a function X1; we introduce this equation for xE in

Eq. (5.2) and obtain a closed equation for

t

ihc (t) = S dt' G(t.,t')c (t') (5.5)

with

G(t,t') S (-i/ ) dEo(E)HE(t)H 1,(t')

exp{-(i/h)[ (t)- (t ' )] ) exp -(i/h)E(t-t')},

t
(t) I [H I (T)-H oe0(T)]d-r (5.6)-

and

x1 (t) =HC(t) exp(-(:/h) XH 1 1 (r)dT) (5.7)

Here we use the fact that the ionic curves are parallel to each

other. We pick one of them as a reference state and denote it by

H (R(T)) H (), and write the others as H (R(T))+E, where E
00 0o 00

0OO

-
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V. CROSSING OF A DISCRETE STATE BY A CONTINUUM S

As we discussed in Section Ii if a neutral atom approacnes

the surface it can be ionized by crossing to an i1finzz number 0

of states differing from each other through the final state of

the transferred electron, the position of the crossing poinz and

the amount of asymptotic energy mismatch tc be compensated. 0 0

treat this case of a neutral curve crossing a continuum of ionic

curves, by the methodology used in Section iI1.3 for one ionic

state, we use for the amplitude of the total wave function ---c.

(3.10) the form

A(x,R;t) x1 (R)I(x,R) + dE p(s) E(R;t) (x,R) (5.1)

The procedure of Section 111.3 applied to the wave function

(3.10), with the amplitude (5.1), leads to

T , (t) =  + (R(t))x. (t) + $dE p( )u (R(t))x (t) (5.2)

and

4~ (t) = -i (R(t) )x (t) +E(C))x, 53
C E E E

We neglect the matrix elements H (E ') , since the cont nuumEC ' 0

states do not interact with each other. Tn the present cone-:t-:

this means that the motion of the ion does nct induce zrans:t'cns

f :he transferred electron from E to E and also that e1ectron-

coe =air ex:zi4ation of the metal by the ionic moticn is

• : ': > < : :i -. .. . -- .= . . . . . .. .. ..
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with

t 2 2
S = Sdt'+i<P( > * (PR- - W(Rp)-U(Rp))] (4.23)

0

where

W(R,4) E E X ×nxm W nm(R)
nm (4.24)

U(R,) Z Z xnxmHn (R)

n m

Here we have used the phase space (R,P) representation of the

nuclear part of the path integral. The EOM's for the optimal

path, obtained from the extremum of the action S given by Eq.

(22), are

P 3W(R,i,) 3U(R,,D)

M 3R aR

R (P + W(R,4))

0 Xn = ( X [inR) - (R)]%

n

The implications of these equations-will be explored elsewhere.

0

. . . . . . . ..
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appearing in the equation of motion of the ion, to be related

through a "fluctuation-dissipation" relationship.

To include in the curve crossing problem of interest here

the effects of electron-hole pair excitation we use a formulation

developed by Leung et. al.,55 who showed that within the Random

Phase Approximation (RPA) the electron gas can be "bosonized" so

that its Hamiltonian, in the presence of an ion located at R(t),

is

H = Z hw 11 t I Z IV (R(t))T - V (R(t)) };c (t) 2
e-h q q q q q q q q I

(6.5)

Here 11q and Tq are boson creation and annihilation operators and

W is their frequency (corresponding to the electron-hole pairq

nfrequency). The quantity iCI(t) 2  appears in Eq.excitationfrqec) Thqutiyc(t) apasnE.

(6.5) because the electrons of the metal interact with the ion

only. The frequencies w and the screened interaction V (R) areq q

expressed in terms of the generalized eigenvalues and

eigenvectors of the frequency dependent, non-local, longitudinal,

dielectric constant E(r,r' ;w) of the metal (with surface) given

by RPA."5 5 The solutions wq of the equation

det e(r,r;w ) = 0 (6.6)q

provide the boson frequencies. The generalized eigenvector

-- (r). given by
q



52

q q

are used to obtain V q(R(t)) from the equation

Vq (R(t)) = e2 Z S Ir - R(t)' 9q (r)dr (6.8)

V (R) is the screened ion-electron coupling. Here e and Ze are

electron and ion charges.

We now wish to obtain the equations of motion in which the

coordinate R(t), its conjugate momentum P(t) and 71 and r- are
q q

classical variables moving in a mean potential analogous to the

one obtained in the previous sections. The procedure used in the

previous sections leads .o the following classical Hamiltonian

P 2
H (R'P.n'y -.x 2) x x) +
c Ix2 2i q1 qqTIqq ,

2 2 22)-,2 12 1 2

X 2' z (Vq(R)rq-Vq(R)lq}

Note that rq* the complex conjugate of nq appears in place
q

of the operator -q, in accord with the classical equivalent of

the boson creation operator.

From this Hamiltonian the equations of notion in the mean

trajectc~y approximation are obtained using Hamilton's equations

• , ' - " , . • - . L ,.. ..- .
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= 3H /aP = P/m (6.10)

2
-3H /aR =-1y a H /aR+Z((av /aR)-n* (aV /3R)7q

c 1' [ q q q q= q

-x 2 
2 H /R-2Re(x 2 aH 12/aR) (6.11)

i 2
3H /3n -X (6. 12)q c q q q K Vq Ii×1

-- q 8H ,'q = + Vq (R i. (6.13)
=q ac/aq iq Tnq ~V()

In addition, the quantum equations of motion for the amplitudes

x 1 and x 2 are obtained in the form

iAx [H (R)+Z(V q(R)I q+V q(R) q Ix - 2 (Rlx2 (6. 14)
q

Ax 2  H 2 2 (R)X 2  - H 2 1 (R)x 1  (6.15)

The equations (6.12) and (6.13) can be formally integrated

to give

t iW (t -t)
° t 0 (t) - S (i/1) V (R(t')X (t ' e q dt

q q q

(6.16)

o o iW t
where n (t) = 1q(o)e q is the value of 71 (t) in the absence of

q q q

the ion. The initial value - (o) may be regarded as a stochastic
q

variable given by the (classical) thermal distribution
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1' exp(-4 iw /T!i )(.7q2
?(ri ,~ ~ TT- 2 TJ

Note that Planck's constant appears in this classical

distribution because it is used to construct the dimensionless

quantities n~ and Tjfrom the momentum and the coordinate of the

oscillator.

we summarize these results by outlining how they should be

used in a calculation in which all nractical concerns (i.e.

compouter cost) are disregarded. Let us assume that we* want to

calculate the thermal average of a quantity A(t)

A(% (t),% Ct),R(t)). Th.is is the exnectation value of the

dynamic quantity A (ik.e. A(X,( t), 2 (t), R(t)) (<(t)IAij(t)>)

and can, in gene a1l, depend on X 1 ,% 2 and R. To start the

calculation we generate by Monte-Carlo the values of nc (o) and

S(a) for all the bosons (i.e. q=1,2, .. N) required for a

realistic descripti4on of the electron excitations of "he cas

system. We denote the set (i (0),-1 (0)) 'v '0. We can
0q q a:

flow solve simnultan~eously the Eq (6.i6b) for -q (t) and n : h

-as. (6.14) and (6.15) for x (t) and x (t), and the equations

16.!C) and (6.11) for R(t). This provides the quanti-ties

Rlt),X,(t) and x (t), for any desired tlime. We can therefore

comtute A (t), corresponding to the set p initial zond-ti4cn.
p

* Us~ng :mportant sampling Monte-Carlo we can generate mcre i

ndtions and repeat the calculation outli-ned above. n

* therma: average <A> of A i's given by
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<A> =Z A(x(t),x2 (t),R(t)) (6.18)
p

While this calculation illustrates the structure of the

theory, it is rather expensive. A simpler procedure is to write

(by using Eq. (6.16))

St 2
Z(V (R) M(t) + V (R) Tlq) a (t) + I v(t- )1x1('f2 dT
q o

with (6.19)

g(t) = 2Re Z V (t)rn(t)
q q q

and

(t-T)= Re(2/ih) Z V q(t)Vq ()expiw q(t-r)] (6.20)
q

We can now treat C(t) as a Gaussian variable at each time t with

the correlation function

<t(t)g(T)> =ReZ V q(t)V q ( )(kT/w q )exp[iw. q (t--T)] ( .1

qq qq (6.21)

We can model the sum above by using a simple, but appropriate,

function of t and 7; this can save substantial computer time,

since we need to generate one Gaussian variable, i.e. g(t), for

each time point. In making such models we must assure that the

exact relationship between j(t-T) and <g(t)g(T)> is preserved;

otherwise fluctuation-dissipation theorem is violated.

. .'. .
. . ..,
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VII DISCUSSION

The main thrust of this paper is that.the theory of low

energy collision phenomena which can be described as two or many

state problems, may have to discard the trajectory approximation.

The reason for this is rather general and the problem is present

whenever we deal with two sets of degrees of freedom x and R and

we must treat x quantum mechanically, but intend to treat R
29

classically. If we replace R in the Hamiltonian with a

trajectory R(t), obtained by following some classical

prescription, we generate a time dependent Hamiltonian for the

quantum variables x; this forces the quantum subsystem to undergo

transitions fran the initial state !i> to some set of final

states If>, f=l,2 ... The system conserves energy only if the

energy loss (or gain) along the trajectory R(t) equals E-z."

Since the latter is different for each final state, energy
conservation requires a different trajectory Rif(t) far each

transition i f. Therefore the force 'R (t)) appearing in

the"Newton" equation for R; 4t),

MR ( t) = F. CRt)) 7!

must be such that it will guarantee that

2, 2MR . (t ) + /2 + E. (7.2)

irt and t. are times post and prior the collision (fzr
2 .
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simplicity we assume that the interaction between R and x is non-

zero only during the collision; this is true for the charge and

energy transfer problems considered here). Since energy

conservation fixes the final state of the classical degrees of

freedom we expect Fif (RA.f(t)) to be a functional of the

trajectory and the Eq. (7.1) to be an integro-differential

equation. 29 '5 5 '5 6 Furthermore, due to the nature of quantum

mechanics each transition i -o f for the quantum subsystem has a

probability W if(Ri f(t)) which is a functional of the

appropriate trajectory Rilf(t). Thus a complete description of

all the events possible in such a system consists of a catalog of

all the transitions i - f that do not violate conservation laws,

a set of integro-differential "Newton's" equations of the form

(7.1) which give a trajectory for each transition, and a set

consisting of one transition probability per transitiJon.

These general considerations do not, however, tell us how

to derive these equations. The obvious szrazegy is to formulate

the problem fully quantum mechanically and then to take the

classical limit for R. We have explored three such methods: one

using the stationary phase approximation in the path integral

expression for the transition amplitude 5 6' 7  a second, using of

wave-packets to generate classical like equations for the

position of the center of the packet and its group velocity:3 1

and a third, which uses the eikonal method. The classical-

approximation for R(t) can be carried out within each method at,
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various levels, generating different "classical" theories for

R(t). The mean trajectory approximation (MTA) presented here is

the simplest of them.

Within a path integral representation the MTA is obtained

by using a coherent state representation for the electronic

degrees of freedom and by obtaini.ng equations of motion for all

the variables by using the stationary phase approximation. 56

Thus the electronic amplitudes are treated as classical fields.

in spite of this we get for them a time dependent Schrodinger

equation driven by an effective, mean potential. If we were to

take a classical limit for the nuclear coordinates only, then we

would have obtained5 7 one integro-differential equation for the

trajectory Rif(t), depending on the initial and final electronic

state.

Within the wave packet formalism MTA is obtained by taking

cne Gaussian packet for both electronic states. A refined
58

version takes -t-o packets, one for each electronic state, and

cenerates two "classical" equations, for two trajectories which
jointly drive the electronic degrees of freedom.

Finally the eikonal method used here can be refined by

58defining two eikonals, one for each electronic state.

This brief survey of various pcssibilities serves to

.. .

. .. . . . .. . . " " "- " -"" " " " " " ", " -" "" '""' ', "."' •""."" •"' "- .""".. . . .,.".. . . ...-.-. ". .- ""..".•.. .•. " " -... ': - i-
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pinpoint the limitations of the'mean trajectory approximation.

Since it generates only one trajectory it satisfies energy

conservation only in average. More specifically the two
58 

""

trajectories theory generated by propagating two Gaussains, one

for each electronic state, gives an ionic trajectory and a

neutral one. If the incident trajectory is neutral then the

kinetic energy of the outgoing neutral trajectory is the same as

the kinetic energy of the incoming one. However the kinetic

energy of the outgoing ionic trajectory is less than the incident

kinetic energy of the neutral by an amount equal to the

ionization energy. The mean trajectory method gives the same

kinetic energy for the ion and neutral. Furthermore, the two

trajectory method can generate an ionic trajectory that is

trapped in the ionic well arid a neutral one which leaves the

surface. The mean trajectory cannot split in this way. :t is

therefore not useful in dealing with trapping. Finally, the two

trajectory method gives ion and neutral trajectories having

turning points on the ionic and the neutral curves, respectively;

the mean trajectory has a turning point at a mean position

between the two turning points mentioned above. This comparison

between the two methods shows the one should not use the MTA at

very low energy when sticking (i.e. trajectory splitting) is

important, or when one intends to analyze detailed kinetic energy

measurements. However, it is hard to believe that the ionization

probabilities at moderate and low energies are very sensitive to

the details of the nuclear motion. For such situations the mean

... .. ... . . . . .. . ............ ... . . . .. . . .. ,. . . ,
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trajectory method should be an adequate tool for calculating the

ionization yield.
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APPENDIX A

The derivation of Eq (7) is similar to the procedure used

to obtain the coherent state representation of the path integral:

H(t H -l

(A-i)

< < qj-,> expj- < IH(t.) Ij>At

where 4j=4(t.). Here we allowed for an explicit time dependence

of H and have made the substitution

< JlH~t j)I0j-i>/< j- l >  :L <0 iIHIOj ....

because this quantity already multiplies the small At. Also

<<0 lj_1 10 < j - At> = 1-<UP iI j>6t

(A-2)
>At

Combining Eqs (A-1) and (A-2) and using

H; kb = < (Z x (t4) in>) H1 ( n(t )!n>)> with
n 

n

Eq W yield Eqs (7)-(9).

-imp-
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Figure Captions

Figure 1. The energies of the neutral and the ionic states

involved in the'description of the ionization

process. Various ionic curves differ through the

final energy E of the transferred electron, with

respect to the Fermi level. I is the ionization

potential of the neutral in the absence of the

surface. # is the work required to remove an

electron from the met&l to infinity.

Figure 2. The energies of the neutral and the ionic curves

invoked in discussing the neutralization of the ion.

The neutral curves all differ through the initia"

energy n of the thermally excited electron used for

neutralizing the ion. &. is the binding energy of

the ion to the surface.
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